Acceleration Slip Regulation Strategy for Distributed Drive Electric Vehicles with Independent Front Axle Drive Motors

نویسندگان

  • Lingfei Wu
  • Jinfang Gou
  • Lifang Wang
  • Junzhi Zhang
  • Omar Hegazy
چکیده

This paper presents an acceleration slip regulation strategy for distributed drive electric vehicles with two motors on the front axle. The tasks of the strategy include controlling the slip ratio to make full use of the road grip and controlling the yaw rate to eliminate the lateral movement due to the difference between motor torques. The rate of the slip ratio change can be controlled by controlling the motor torque, so that the slip ratio can be controlled by applying a proportional-integral control strategy to control the rate of the slip ratio change. The yaw rate can be controlled to almost zero by applying torque compensation based on yaw rate feedback. A coordination control strategy for the slip ratio control and yaw rate control is proposed based on analysis of the priorities and features of the two control processes. Simulations were carried out using MATLAB/Simulink, and experiments were performed on a hardware-in-loop test bench with actual motors. The results of the simulations and experiments showed that the proposed strategy could improve the longitudinal driving performance and straight line driving stability of the vehicle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Acceleration Slip Regulation Strategy for Four-Wheel Drive Electric Vehicles Based on Sliding Mode Control

This paper presents an acceleration slip regulation (ASR) system for four-wheel drive (4WD) electric vehicles, which are driven by the front and rear axles simultaneously. The ASR control strategy includes three control modes: average distribution of inter-axle torque, optimal distribution of inter-axle torque and independent control of optimal slip rate, respectively, which are designed based ...

متن کامل

Type-2 Fuzzy Braking-Torque Electronic Stability Control for Four-Wheel Independent Drive Electric Vehicles

The electronic stability control (ESC) system is one of the most important active safety systems in vehicles. Here, we intend to improve the Electronic stability of four in-wheel motor drive electric vehicles. We will design an electronic stability control system based on Type-2 fuzzy logic controller. Since, Type-2 fuzzy controller has uncertainty in input interval furthermore of output fuzzin...

متن کامل

Parameters Design and Economy Study of an Electric Vehicle with Powertrain Systems in Front and Rear Axle

To achieve higher economy of the original driving scheme with single motor and settled gear ratio, new configurations with different powertrain systems in front and rear axle were designed. Firstly, according to the power and torque required by a micro electric vehicle (mEV) in various drive cycles, the parameters of a small and high power motor were determined. Secondly, for schemeⅠwith dual m...

متن کامل

Integrated Traction Control Strategy for Distributed Drive Electric Vehicles with Improvement of Economy and Longitudinal Driving Stability

This paper presents an integrated traction control strategy (ITCS) for distributed drive electric vehicles. The purpose of the proposed strategy is to improve vehicle economy and longitudinal driving stability. On high adhesion roads, economy optimization algorithm is applied to maximize motors efficiency by means of the optimized torque distribution. On low adhesion roads, a sliding mode contr...

متن کامل

Voltage Control Strategy for Direct-drive Robots Driven by Permanent Magnet Synchronous Motors

Torque control strategy is a common strategy to control robotic manipulators. However, it becomes complex duo to manipulator dynamics. In addition, position control of Permanent Magnet Synchronous Motors (PMSMs) is a complicated control. Therefore, tracking control of robots driven by PMSMs is a challenging problem. This article presents a novel tracking control of electrically driven robots wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015